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INJECTION OF AN INVISCID SEPARATED JET AT AN OBLIQUE
ANGLE TO A MOVING STREAM
by Marvin E. Goldstein and Willis Braun

Lewis Research Center

SUMMARY

. An analytical solution has been obtained to the problem of a two-dimensional incom-~
pressible jet injected into a moving stream from an orifice set at an oblique angle to the
stream. It is assumed that the jet separates from the downstream edge of the orifice.
The solution is valid when the normalized difference between the total pressure in the
jet and the total pressure in the main stream is not too large. Typical flow patterns are
shown to illustrate the effects of varying both the jet offset ratio and the total pressure
within the jet. The analysis shows that for orifices tilted into the main stream small in-
creases in the total pressure in the jet result in large increases in the jet penetration
and thickness.

INTRODUCTION

The flow field which results from the oblique injection of a jet into a moving stream
is of considerable interest in a number of fluid mechanical devices. Among these are
ground-effect machines, jet flaps, wing fans on VTOL aircraft and fuel injection systems
in combustion chambers.

The fluid mechanics of jet penetration into moving streams is by no means fully

-understood. Some insight into this phenomenon can be gained by considering the injec-

tion of two-dimensional inviscid incompressible jets into moving streams since such
flows are simple enough to be amendable to mathematical analysis, Of course, viscous
effects can be quite significant in real fluid flows. However, in order to take viscous
effects into account the usual procedure is to first perform an inviscid analysis and then,
provided viscous effects do not modify the flow significantly in the wake region, to mod-
ify the flow by superimposing viscous boundary layers. In any event, it is hoped that the
inviscid analysis will reveal some of the important features of the flow field and thereby



lead to an increased understanding of the phenomena involved,

Relatively few analyses of inviscid flows of this type have been performed, This is
due at least partially to the fact that analysis of such flows involves the solution of a
nonlinear problem in which the shapes of the boundaries are unknown. However, in the
very special case where the total pressure in the jet is equal to the total pressure in the
main stream, the classical theory of inviscid jets can be used to obtain solutions. Flows
in which the total pressure in the jet equals the total pressure in the main stream are
discussed by Ehrich in reference 1, Ehrich considers a large number of possible flow
configurations for jets issuing from both slots and orifices, It has been found, however,
that there is a serious error in his results for jets issuing from orifices. (Since these
results emerge as a special case of the analysis performed herein the corrected solu-
tions will be given.) The error was caused by taking the wrong sign for the square root
in the expression for the contraction ratio.

There is another limiting case, called the ''strong jet approximation, ' in which the
analysis can be considerably simplified. This is the case where the total pressure in
the jet is very much larger than that in the main stream. An analysis of this type of jet
was first carried out by G. I. Taylor (ref. 2). Taylor obtained an analytical solution by
introducing an additional approximation. This latter approximation was removed by
Ackerberg and Pal (ref. 3), who developed a variational principle for the problem and
thereby obtained a numerical solution. Although making the strong jet approximation
considerably simplifies the analysis, the resuiting problem is still nonlinear and in-
volves an unknown boundary so that an exact analytical solution does not seem feasible,
In any event, as was pointed out by Taylor (ref. 2), the viscous spreading of real jets
which have a total pressure much larger than that in the main stream is so large that the
inviscid solutions show no relation to actual experiments.

The general problem of an inviscid jet issuing into a flowing stream from a two-
dimensional vaned slot was reformulated by Ting, Libby, and Ruger (ref. 4) in terms of
two simultaneous nonlinear singular integral equations. Because of the extreme diffi-
culty involved in solving such equations, the authors considered two limiting cases of the
equations, The first corresponded to the strong jet approximation and the second to the
case where the total pressure in the main stream differs by only a small amount from
the total pressure in the jet. Because of the nature of the boundary conditions associ-
ated with the vaned slot, the authors could not linearize the problem even in the case of
small total pressure difference. Hence, their formulation of this problem is still in
terms of a very difficult nonlinear singular integral equation. The authors give a nu-
merical procedure for obtaining a solution to this equation; but, as pointed out by Ting
and Ruger (ref. 5), no attempts at carrying out the solution have been successful. I
was also shown in reference 5 that no ordinary perturbation procedure could be used to
obtain the solution to the problem of a jet issuing from a vaned slot. However, it will



be shown subsequently that a systematic perturbation procedure can be used to linearize
the problem of a jet issuing from an orifice into 2 moving stream in the case where the
normalized total pressure difference is small.

In this report an explicit analytic (closed form) solution is obtained for the flow field
resulting from a jet issuing from an orifice into a moving stream. The orifice is set at
an oblique angle to the flow and it is assumed that the jet separates from the downstream
edge of the orifice to form a stagnent wake. The flow configuration is shown in figure 1.
The flow will be assumed to be two-dimensional, inviscid, and incompressible. I addi-
tion, it will be required that in a certain sense (to be specified more precisely below)
the normalized difference between the total pressure in the jet and the total pressure in
the main stream be small, The upstream boundary of the jet is the stream line emanat-
ing from the upstream edge of the orifice. The velocity, in general, will not be continu-
ous across this stream line,

The problem is solved by expanding the solutions in a small parameter related to
the difference in total pressure between the jet and the main stream. The zeroth-order
solution corresponds to equal total pressures and can be written down immediately by a
simple application of classical techniques. The solution to the zeroth-order problem in
fact corresponds to one of the solutions obtained in reference 1, However, it was found
that by using a somewhat different procedure than that used in reference 1 a simpler and
more convenient form of this solution could be obtained.

Since the boundary shapes for the first-order (different total pressure) problem are
unknown, a technigue similar to that employed in thin airfoil theory is used to transform
the first-order boundary conditions to the zeroth-order boundary. This transformed
problem still involves a combination of boundary and jump conditions which cannot be
handled by ordinary techniques. Therefore, a new procedure was developed to trans-
form this problem into a standard problem for a sectionally analytic function. (A sec-
tionally analytic functicn is one which is holomorphic in each of two adjoining regions
and has a specified jump in value across the boundary of these regions.) The procedure
consists of introducing a new dependent variable in such a way that the new variable has
to satisfy only jump and symmetry conditions instead of the combination of jump condi-
tions and boundary conditions that the original variable satisfies. In order to introduce
this new variable, several mappings between certain complex planes are introduced.
The solution is then obtained by using the theory of sectionally analytic functions.

E should be emphasized that the techniques developed herein are quite general and
can be applied to a wide variety of jet injection problems. Since it is impossible to tell
from the inviscid analysis whether separation will occur at the downstream edge of the
orifice, the case with no separation will be considered in a future report. I is shown in
appendix A that, by a simple rescaling, the results obtained herein can be applied to the
case where the density of the fluid in the jet is different from that in the main stream,



It is perhaps worth pointing out why an ordinary perturbation procedure works for
jet injection problems from orifices but will not work for jet injection problems from
slots and vaned slots. The reason is a consequence of the fact that in the mathematical
solution the flow fields associated with slots and vaned slots have stagnation points at the
up-stream edge of the slot, whereas the flow fields associated with orifices do not. ‘The
nature of this stagnation point changes discontinuously as the total pressure in the jet is
changed from the free-stream value. This discontinuous change results in a singularity
at the stagnation point in the first-order solution when an ordinary expansion procedure
is used. This difficulty can be overcome by using the method of matched asymptotic ex~
pansions. The inner expansion can, in fact, be obtained by rescaling the results given
in reference 5, and the outer expansion can be obtained by the procedure given in this

report.

ANALYSIS
Formulation and Boundary Conditions

It will be assumed that the flow is inviscid, incompressible, and irrotational. The
jet configuration is illustrated in figure 1. The analysis is limited to the case in which
the difference between the total pressure in the jet P;i and the total pressure in the main
stream P_ is not too large; or more specifically, to the case in which

Jet

Wake

Jet source

Figure 1. - Schematic configuration of jet penetrating into flowing siream.
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is the density of the fluid, and V. is the velocity of the main stream at infinity.
Let ¢ be a convenient reference length which will be specified in the course of the

alysis. The X and Y components of the velocity, U and V respectively, will be
made dimensionless by V_, and the stream function ¥ and the velocity potential &
will be made dimensionless by V_{. Thus, the dimensionless quantities u, v, ¥, and
¢ are definedby u=U/V_, v=V/V_, ¥=¥/V_ I, and ¢ = &/V_1. The dimension-
less complex conjugate velocity ¢ and the dimensionless complex potential W are de-
fined, as usual, by

g =u-1iv
and
W=o¢p + iy

With all lengths made dimensionless by I (i.e., x=X/1, y=Y/l, a=A/l, b=B/1,
and h = H/7), the flow configuration is shown in the physical plane (with the complex
variable z defined by z = x + iy) in figure 2,

The stream of fluid issuing from the orifice formed by the two parallel walls I/(-l\)
and EK meets the main stream at the point D and forms a common stream line, which
is denoted by S in figure 2. At the point E the jet separates from the wall ER and a

Figure 2. - Flow configuration in physical plane {z-plane}.



stream line (denoted by F in fig. 2) marks the boundary between the jet and the down-
stream wake region, which is assumed to be composed of stagnent fluid. The shapes of
the curves S and F are a priori unknown and must be determined from the analysis.
Points on the curves S and F will be denoted, respectively, by zS = XS + iys and

zF + xF + in.

In order to satisfy the requirement that there be no discontinuities in static pressure
anywhere within the flow field, it is necessary (as will be shown subsequently) to allow
the velocity to be discontinuous across S. For this reason the stream line S will be
called the slip line. The region within the jet and orifice is denoted by D+, and the re-
maining region of the flow (i, e., the main stream) by D . Since the velocity (and as a
consequence, the velocity potential) is discontinuous across S, it is convenient to use

the superscripts + and - to distinguish these regions. Thus,

¢*(z); z €D

¢(z) =
¢ (z); z €D
and
Wt(z); z € D*
W(z) =
Wi(z); z€D

Then tT and W7 are holomorphic in the interior of D', and ¢~ and W~ are holo-
morphic in the interior of D™,
The following argument will show that the velocity must be discontinuous across .

Bernoulli's equation can be written for the flow inside the jet as

P.
BOSY) 4 Jet(z) |2 = —] z € D" @)
2 2

PEY) 4 [e7(z)]? i z €D (3)
LovZ —;—pVi



Now, in view of the fact that S is a common stream line to the external and internal
flow, the points z in both these equations can be chosen to be the same point zs on the
curve S. Since the static pressure must not be discontinuous across 8, it follows from
equations (2) and (3) that

9 _ 9 P.-—Poo
TG | R [ O ] R M. (4)
2

at every point ZS of S,

On the other hand, since there is no flow in the wake, it is clear that the static pres-
sure along the free-stream line F is constant and equal to the pressure in the wake.
Because the velocity in the jet must become uniform across the jet far downstream (i.e.,
at the point C in fig. 2), it follows that there cannot be any pressure difference across
the jet far downstream. It can be concluded from this that the pressure in the wake must
equal p_, the static pressure of the main stream at infinity. Hence, equation (2) shows
that at any point ZF of F

1 2
P.-(p_+=pV
9 P.-p ] (oo 00> P.-P
|t 25| :11_2”:“_, 2 D B (5)
1
EPVOO EPVEO Lov?

Since S is a common stream line to the internal and external flows it is clear that
ﬂmW’Jr(zS) and ﬂmW‘(zS) are both constants. Moreover, the arbitrariness in the defini-
tion of W can be partly removed by choosing these constants to be zero (ref. 6). Hence,

Imwtz)y=ImW (z) =0 for z €8 (6)
The remaining arbitrariness in W can be removed by choosing
W 0) = W (0) =0 (7)

The fact that F is a stream line implies that there exists a real constant I,UF such that

F

JWh(z) = ¥ for z € F (8)

The conditions imposed on the velocity at infinity are (in view of the manner of nondimen-
sionalization; also see fig. 2)



¢*(z) ~0  for z ~K 9)
and

£ (z) =1 for z -G (10)
The remaining boundary condition is that the normal component of the velocity vanish on

the solid boundaries. These conditions are sufficient to completely determine the solu-
tion, They are summarized below for convenient reference.

-
It @) |2 - [ @)]% =«
z €8S
ImW(z) = ImW (z) = 0
|C+(z)|2 =1+¢
z €&€F
ImWz) = wF . (11)
Imetz)y =0, z <KD
Imet(z)=0; zeER
It (z) = 0; z € GD
J

Asymptotic Expansions

For small values of ¢, the functions ¢ * and W¥ can be expanded in an asymptotic
power series in €. In view of the fact that the shape of the slip line and of the free-
stream line depend on €, these expansions imply that the coordinates of S and F, zS
and zF, respectively, and the asymptotic jet width h must also be expanded in powers
of €. Hence,



= £, +egﬂ1= 4. )

Wi=W0+ve+. ..

s __s S
Z —Zo +€Zl + . ¢ 0
. (12)
F__F F
Z —-ZO +€Z1 + o e o
h =

h0 +eh1 +. e

F__F F
Vo= +eyy .. J
It should be pointed out that the expansions for zS and zF do not imply that the
complex variable z is being expanded. These expansions are only for the shape of the
boundary of the jet. In fact, only one of the expansions (12) is independent, and the
remaining expansions are determined in terms of it. Thus, for example, since

+
¢t = aw
dz
it follows that
dw dw*
§0+€€:{+, =—0+€ 1+-¢o
dz dz
Hence, equating like powers of € shows
~
Z = id_VJ_Q
0 4z
+
g:t = .fiw_l
o L (13)

ooooo




Therefore, once the coefficients of the various powers of € are known in the expansion
for gi, the coefficients of the various powers of ¢ in the expansion for W* are deter-
mined by equations (13).

The reason for omitting the superscript + or - in the zeroth-order terms of the
first two expansions is that (as will be shown subsequently) the zercth-order solutions
are not discontinuous across the curve S and so there is a single funciion go which is
homomorphic in the entire flow field (of course, the same is true for Wo).

The reference length 7 will now be chosen in such a way that

0=
Thus, I is the zeroth-order asymptotic thickness of the jet. This is denoted symbolic-
ally by putting

(14)

The last expansion {(eq. (12)) is then

h=1+eh +... (15)

Zeroth-Order Solution

When the expansions (12) are substituted into the bourda:y conditions (7)
and (9) to (11)) and only the zeroth-order terms are retained, the following boundary
conditions for the zeroth-order solution are obtained: First, the first boundary condi-
tion (11) shows, as has already been anticipated, that the zeroth-order solution
must be continuous across the slip line and, hence, that it is characterized by functions
which are holomorphic everywhere within the flow field. The remaining conditions show

that
WO(O) =0
S (16)
ﬂmWo(zO) =0

10
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l§0@5)|=1

ﬂ”‘wo(zg) ]

z & KD
— (17)
ﬂméo(z) =0{z < EK
z € GD
go(z) -0 for z - K
éo(z)-—l for z -~ G )

The conditions (16) merely serve to show that, because of the manner in which the
arbitrary constants have been adjusted in the complex potential, the stream line ema-
nating from the point D is to be taken as the zero stream line.

Now the change in the stream function across the jet must be equal to the volume
flow rate through the jet. Hence, if Qo denotes the zeroth-order volume flow through
the jet, in view of the second condition (16) and the second condition (17), it
follows that

Qy=0-up

The first boundary condition (eq. 17)) shows that far downstream in the jet (i. e., at the
point C) the zeroth-order velocity goes to 1. In view of the normalization (15) the as-
ymptotic thickness of this portion of the jet must also be 1. It follows from these re-
marks that QO = 1. Hence,

v = -1 (18)

Now, the boundary value problem posed by the boundary conditions (17) is a simple
free-stream-line problem which can be readily solved by the Helmholtz-Kirchhoff tech-
nigue. In fact, the solution to this problem has already been carried out by Ehrich
(ref. 1). His solution, however, is somewhat inconvenient for our purposes. The pro-
cedure used herein for obtaining the solution is (ref. 6) to draw the region of flow in the
hodograph plane and in the complex potential plane, and then to find the appropriate map-
ping of these two planes into some convenient intermediate plane (say the T-plane). The

11
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Figure 3. - Zeroth-order complex potential plane (Wy-plane).

—uo

Figure 4. - Zeroth-order hodograph (L g-plane).

shapes of these regions can readily be deduced from the boundary conditions (17), and
they are shown in figures 3 and 4 (we have put Wo =@+ il[/o in fig. 3). The corre-
sponding points in the various planes are designated by the same letters. The zeroth-
order "'slip line'' is shown dashed in these figures since it does not correspond to a line
of discontinuity and can therefore be ignored as far as obtaining the zeroth-order solu-
tion is concerned, The intermediate T-plane is chosen in such a way that the region of
flow maps into the upper half-plane in the manner indicated in figure 5. We shall denote
the real and imaginary parts of the variable T by £ and 7, respectively. The region

12
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Figure 5. - Intermediate plane (T-plane).

of the T-plane into which the zeroth-order flow field interior to the jet and orifice maps
is denoted by 9+, and the region of the T-plane into which the zeroth-order main
stream maps is denoted by 96. The dividing line between these two regions (which is
being called for convenience the zeroth-order slip line even though no slip occurs in the
zeroth-order solution) is denoted by .9’0.

A simple application of the Schwartz-Christoffel transformation (ref. 7) shows that
the mappings which properly transform the Wo—plane and the go-plane into the upper
half T-plane in the manner indicated in the figures are respectively defined by

daw

0_1T+1 n=0 (19)
dT 7 T
and
dln ¢ :
0__iva n=0 (20)
dT T™VT - A
Or, performing the indicated integrations,
Wy=1(T+1+lnT)-1i n=0 (21)

T

13



§0=T-2A-21\/—A_\/T-A =0 (22)
T

1 _T-2a+2VaVT-A g (23)

o T

In order to find the equation for .S’O, the zeroth-order slip line in the T-plane, notice
figures 3 and 5 show that ﬂmWO(T) =0, whenever T € .70. Now equation (21) shows,
since T = £ + in,

1/2
WO(T)=_1[§+1+in-ivr+1n<§2+n2) +itan'lﬂ] 0=tan" 1M <y
m £ £

Hence, setting the imaginary part of this expression equal to zero we find that

l77--7T+ta.n_117- =0 for T € &,
T ¢ 0

This equation has two solutions. The first
n=0 and £E<-1

corresponds to the negative real axis in the WO—plane and is of no interest to us. The

other solution is

tan(n—n)zg o<n<m

This solution corresponds to the positive real axis in the Wo—plane and therefore deter-

mines the equation of .9"0. Thus,

£= U =- 1 0<n<m for Te ¥,
tan(m - n) tan 7

Hence, the parametric equation for .9’0 is

T=--"T1_+ip=-_"1 e 1n 0<n<m (24)
tan 7 sin 7

14



It will be necessary in what follows to have an expression for VT - A for T € .9’0 in
terms of the parametric variable 7. In order to obtain this expression, notice that

NT - 2 = o (1/2)In(T-2)

Hence, using equation (24) in this expression shows that for T € .9’0

2 9\l/2 2 2\1/2
1+ - pe+m + 1
VT - A= AW ; + 1 A for T & .9’0 (25)

2

where
pm =ncotn + A (26)

It follows from the first equation (13) that the points in the physical plane (fig. 2)
are related to the points in the T-plane by

1 Wy
z(T) = —~— — - dT + Constant (27)
£o(T) dT

Substituting equations (19) and (23) into this formula shows that

2(T) :%I:II(T) + IZ(T)] (28)
where
T T
1,(T) = T-24+2VaVT- 84y, L1 _ar (29)
T £o(T)
-1 -1
T -
Iz(T):/ T-2A+21;/Z\/T—AdT (30)
T
&

15



and we have used the fact, indicated in figure 2, that the origin of the coordinate system
in the physical plane is to be at the point D. On carrying out the indicated integration in

equations (29) and (30) we find that

Il(T)=(T+1)+4i\/ZVT-A-4A1n(iVT-A+\/Z>

2
+4\/ZV1+A+2A1n<V1+A-\/Z) +4 Ain (31)

and that

I,(T) = ZTA _2vavT-a ., 1n<i\/T - A+ \/Z>
T

- 2
+2A+2\/Z\/1+A-1n< 1+A-\/Z> - 27i

Hence, substituting these relations into equation (28) yields

2(T) =1[T +2T_A + 21\/Z<2 - %)\/T - A+2(1-2 A)1n<i\/T S A+ \/Z>]

w
2
+-1-l:(2A+1)+(2A— 1)1n<\/1+A— \/Z) +6Va Vi+a+2in2a- 1)J (32)
m

By definition (see figs. 2 and 5),
z(A) = a +ib (33)

Hence, equation (32) shows, after equating real and imaginary parts,

2
a=13a+1)+(2A- 1)1n<WM> +6VaVvita
m

Va (34)

b=22A-1)

16



There is an error in Ehrich's expression for a which corresponds to having the wrong
coefficient in the \/1 + A term in equation (34). By using these latter two equations,
equation (32) can be written as

2(T) = a +ib +—1I:(T - A)(l - 3>+ 2i\/Z<2 - -1-)\/T -6-D 1n<i\/T i éiﬁ):' (35)
w T T Va

We notice for future reference that equation (31) shows

— 2
Il(A)=A+1+2Aln<M> +4\/ZV1+A+4111A (36)

Va

Formulation of First-Order Problem in Physical Plane

The mapping T — z defined by equation (35) maps the upper half T-plane approxi-
mately into the region of flow in the physical plane. The domain 98 is mapped into the
cross-hatched /Ifgion of the physical plane shown in figure 6. The curve 5’0 and the
line segment EC are mapped into the dashed boundaries S0 and FO’ respectively, of
this region. This region, of course, differs from the true interior of the jet, whose
boundaries S and F are indicated by the solid lines (curved) in the figure. However,
when lel is sufficiently small, S and F do not differ very much from the zeroth-order
boundaries of the jet S0 and FO, respectively.

Now the first group of the boundary conditions (11) are specified on the curves S
and F in the physical plane, whose shapes are not known at this stage of the solution.
However, the curves S0 and FO, whose shapes are known, differ from S and F, re-
spectively, by quantities which are of order ¢. Since insofar as the first-order solu-
tion is concerned, the boundary conditions only have to be satisfied up to and including

D

Figure 6. - Comparison of zeroth-order and true boundaries in physical plane.

17




terms of order ¢, we shall attempt to transfer the boundary conditions correct to terms
of order € from S and F to SO and FO’ respectively. To this end recall that the
solutions have been divided into two parts (indicated by the superscripts + and -), one
of which is holomorphic in D* and the other holomorphic in D~. We shall assume
where necessary (as is done in thin-airfoil theory) that each of these portions of the
solution can be analytically continued across S and F to S0 and Fo, respectively.
Thus, the values of gi and W¥ ata point zs of S can be expressed in terms of their
values at the neighboring point zg of SO by performing a Taylor series expansion of
these quantities about zg. Of course, similar remarks apply to F. Hence,

W+(ZF) = W+(z(1;) + §+(zg>(zF - z(])?)+ e e

Substituting the asymptotic expansions (12) into these Taylor series and retaining the
terms of Of(e) yields

gj:(zs) = §0<z§> t€ g%(zg) + <&)> z? . O(e 2) (37)
4 /7=y

Wi(zs> = Wo<z(s)) +€ [Wf(zg) + go(z(s)>zsl:] + O(ez) (38)

(eT) - ofel) + e g;(zg>+<f‘&> I +ofe?) (39)
dz z=zg

18



W(z") = woag )+ e ["VT(Z(P;) * Zo(zg)zf] +ofe?) (40)

Hence, we have succeeded in obtaining expressions for the values of the dependent vari-
ables W¥ and gi at the points of the unknown boundaries S and F in terms of their
values on known boundaries SO and F0 with an error of order €2. When these ex-
pressions are substituted into the boundary conditions (11) and terms of 0(62) are ne-
glected, expressions will be obtained which give the correct boundary conditions for the
first-order solutions on the known boundaries S0 and FO' It is clear from the form of
these boundary conditions that it will first be necessary to obtain expressions for
|§ﬂ:(zs)|2 and lgi(zF)l 2 correct to terms of Ofe 2) before this can be carried out, But
it follows immediately from equation (37) that

7 o) erole) i)+ (57,

dg
v i) (52) 4|l

= |zq(z> 2+€ £o (25 ? €T<Zg> 1_ (%o z5
o) LB | 2R ()
+€|L 25 2gf(zg)+ 1 (%o 25| + ofe?
Y g )
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Hence,

In a completely analogous way, it follows that

2/2@ CI<Z§>+ 1 (dt‘o) Zf +O<€2)
CO(ZOF) CO(Z(I;) P Ja=zg

(42)

2
+ 2¢€

oo )

2
- |5olet)

")

Substituting the expansions (38) and (40) to (42) and the last of expansions (12) into the
first group of boundary conditions (11), equating the coefficients of ¢ to the first power,
and using the zeroth-order boundary conditions (17) to eliminate l§ O(Z(I; )l yield

ﬁel:i(@_ i(%_g_)}zl 1 (43)

olto) b)) * [eofe)’
Qe[c{(z§)+ () ZfJ B »
o) )\ e
I [Wi(zg) + €oeg)e7] -0 (45)
Im [Wy(25) + tole5)25] = 0 (46)
Im[Wyzg )+ Soleo )21 | = ¥E (47)
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Thus, equations (43) to (47) are the boundary conditions for the first-order solutions on
the boundaries S and F ''transferred'' to the zeroth-order boundaries S0 and FO.
Hence, the first-order boundary value problem has been transformed from one in which
the shapes of the boundaries are unknown to one in which they are known, Notice, how-
ever, that these boundary conditions involve the variables W1 ex 1 zf, and zf‘ But
Cl is completely determined in terms of W1 by the second equation (13), In view of
this the conditions (43), (45), and (48) may be thought of as two boundary conditions con-
necting the variable § with the variable ¢ 1 across S (or equivalently the variable
W"' with the variable W ) plus an equation which determmes zy once Cl are known,
Thus subtracting equatmn (46) from (45) yields

ﬂmW{(zg) = .70;W1(zg) (48)

Then, in view of the second equation (13), equations (43) and (48) are the boundary con-
ditions on S, which connect the solgtion c’lf in D" with the solution ¢ in D7, and
equation (45) serves to determine zy once CI is known. (Actually, z? will be deter-
mined in a slightly different fashion,) Similarly, the variable z] can be eliminated
between the conditions (44) and (47) to yield a single boundary condition for C“lL (or W'{)

on FO‘ To this end notice it follows from equation (13) that

0

1 dﬁo_ 1 dCO dWo 1 d§0 d in CO
L 0.2 ¢ ¢

€g dz  §o AWy dz  §, dW, dw,
Hence, in particular
1 <§Q> - tofef) dln gy
~20\"0
F\\dz /, __F dw,
C’o(zo) z=2) 0 /pmag
But
dln ¢ de do
i 0 =1 1 __0- = - __0_
dw d d
0 /peg¥ %0 %0
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where

This shows that i(d In ¢,/ dWO) p i
Z=Z

is the curvature of the stream line S,.) Hence

0

Re| 1

90 = arg CO

is real, (In fact, it shows that i(d In ¢, /AW, )

Z=Z0

-
d dl
) o p( “Co> ¢ ()
CO(Z(I)?) dz z=zg i aw, ¥

F\ F

= ﬁe§i<d i c0> m
aw :
0 Z—Zg !

<d In c0> ymﬁ[co(zgﬂ )1 |

Using equation (47) to eliminate Jm [Co(zg )zf ] from this relation yields
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d
Re| 1 <—C9> zf‘
F\\dz F
CO(ZO) 2=Z,

_ _i<d In Co> [ﬂmW’{(zg> ) d/ﬂ
dw, z=z§‘



Substituting this into equation (44) yields

C+ F dinct
2 :(z%) ( " o> [pmie)-+i] L

%)

Or, dividing both sides by i(d In co/dwo) -

Z=Z0
Pe Co(f§)<i‘f’_g> CI(Zg) i} ﬂmw;(zg)wf ’
' dCO z=zg CO(Z(]);)
_1e B o) L L o FV(TW0
2 O(ZO)<d50>Z=z§ ol )<d50>zzzo

Hence,

etz faw dw,
o 5o Eg (58wl f i)
Z=7

is the boundary condition for C'{ (or W‘lL) on FO. Thus, the boundary conditions on the
curves S0 and Fg are given by equations (43), (48), and (49). The boundary conditions
for the remaining (solid) boundaries are easily deduced by substituting the first asymp-
totic expansion (12) into the second group of boundary conditions (11) and equating the
coefficients of € to the first power. For convenience, we now collect in one place the
complete set of first-order boundary conditions,
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i@ G|

Co(z) Co(z) 9 | CO(Z) l2

>z €8

Im[Wi(z) - wi(@)] =0 J

dw,  &3(z) aw,
Im £o(2) 0 (2) 1. W’{(Z) - Imll £o(2) 0 @) - ’J/f z €F,
gy golz) 2 Gl

Imtiz)=0 z€ %D | >~ (50)

Imeiz) =0 zeﬁ{r

ﬂmCi(z) =0 zZ @J

§41"(z)-—0 z - K

Ci(z)-—o z - G J

Transformation of First-Order Problem to WO-Plane

Now these boundary conditions completely specify a boundary value problem (or
more precisely, two boundary value problems connected along the curve SO) in the
zeroth-order region of flow in the physical plane., However, under the change of vari-
able z — W0 defined by equations (21) and (35), this boundary value problem can be
transformed into one in the zeroth-order region of flow in the Wo-plane (which is indi-
cated in fig. 3), The boundary conditions in the Wo—pla.ne are

s [c{(wo) ) c;(wo)} i 1
SoWo)  £o(Wy 2|§0(W0)|2 W, € DC (51)

Im[Wi(Wg) - Wy (Wg)] =0
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S{UA —
I |to(Wg) o0 SLO | - g L 5 So¥ )— Y1  WyeEC (59)
aty Eo(Wo)

gy
CHWy) _ )
”w WO e KD
¢o(W,)
§ —_
1Wo) =0 W, eEK (53)
W _
W) _ 0 W,eGD
£ (Wy)

where the boundary conditions (17) have been combined with the boundary conditions (50)
to obtain the boundary conditions (53). Naturally, the variables Q‘{ and WJI’ are defined
on the unit strip below the real axis, and the variables );’i and Wi are defined on the
upper half-plane,

The two equations (51) can be combined to give a single jump condition for &4
across DC In order to see this, notice it follows from figure 3 and the definition of a
derivative of a holomorphic function that, for W0 S DC

0 _a—(pgﬂm[wf( o - Wi(W,)]

= j ﬂm[W{((pO A ((po):l ﬂﬂ—[w(¢0) Wy (¢0):|
0

= Im gvﬁ‘v—o[wywo) - Wy (W)]

Hence, using equations (13) shows that
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dw? dw; Hw (W
S id PR B §1(Wp) _ &4 (Wp)
§0(W0) dz dz CO(WO) Co(Wo)

0=1Jm

Multiplying this result by i and adding it to the first equation (51) gives

1(We)  £1(W) 1

= for W, € DC (54)
SoWo)  LoWo)  2je (w,) |2

0

It is also necessary to transform the boundary condition (52), To this end notice that for

W0 € EC
dW,, €3(W,) dw,
2 I CO(WO _0°1 0 W{(Wo) = 2 ﬂml CO(WO) —0
anO dto CO(WO) a@o 2 dCO
Hence,
dw, ¢H(w,) dw,
Im e oWy —2 L0 wWrw)| = Im I 2 g wy—2
8990 dCO CO(WO) 2 8900 dCO
Therefore, using the definition of a derivative of a complex variable
dw, ¢H(w,) dw,
I e (W) —2 L0 _wiw)| = g L I te (W) —2
dw,, ¢y o(Wo) 2 dW, dt,

Differentiating by parts yields

aw, ¢rw tw) awt dw
Im €o(Wp) d 0 51Wo) +C1( 0)— 1 - Im l+i;’0(W0 —d-<l ——0>

AW, | dgy to(Wo) | Eo(Wy)  aw, 2 aw,,

Upon using both equations (13) we find
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a_|4Wo G1(Wy) +§I(Wo) oy 9w

I {60 (Wo)
dWO dCO CO(W()) CO(WO) CO(WO) dz

AW, c’{(wo)

dw,
= Jm &y (W) 4 (1 770)_9g, £o(Wp) d
aw, \2 dt, aw,| gy Lo(Wo)

Thereifore,

AW, [ £3 (W)
I (W) d 01>1*"0
AW, d¢, {£o(Wp)

-1 =0 for WOEI/EE
2

In view of this equation, let us define A1 on the unit strip below the real axis in the
Wo—plane by

aWy (€1(Wp)
A (Wg) = 8o(Wg) —&- |2 20 2 “1=yy=0 (55)
dWg | d€, CO(WO) 2

Clearly, AT is holomorphic on its domain of definition, and

ﬂmA+(W0) =0 for W, €EC (56)

Now it follows from boundary conditions (17) that CO(WO) is real for W0 € KD. Hence,
it is readily seen from figure 3 and the definition of a derivative of a holomorphic func-
tion that for W0 € KD

dWy, 1 1

aty (deg/aWg)  aug /agg

where we have put
ug = Re CO

This shows that (dW0 /dg O) is also real on ﬁl\) Hence, it follows from the first bound-

ary condition (53) that for W0 € KD
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AW, |£1(W,) 1

dWy - (W) dWy o [E5(Wp) 4
= /A - = ﬂ”‘ -—\|= _——
IR NCANE T IRTANE at [¢o(Wy) 2
Differentiating this result along HD

3 dW, [E1(Wp) 4

0= e -z

20y | gy |Eo(Wy 2

0, 5 AW, g’lf(wo) 1

a‘PO dCO CO(WO) 2

) d JaWo[Ei(Wy) 4

- In -1

awy | dtg |20 (W)

Therefore, in view of the fact that ¢ O(WO) is real for W0 € KD, we conclude from def-

inition (55) that

ImAT(Wg) =0  for Wy EKD (57)
A completely analogous argument shows that
Im A (W) =0  for W, €KE (58)
Now define A~ on the upper half W,-plane by
dW,, €7 (W,)
- 1 1 1
A (Wo) = Co(Wo) d 0 0 + - E -2 0= 4/0 (59)

dWo | %o [S0(Wo) 262w,

Then A~ is holomorphic in the upper half-plane. An argument analogous to that used

to deduce condition (57) suffices to show that

Im N (Wy) =0 for W,<GD (60)

28



It follows from the jump condition (54) and figure 3 that, for W, ]/)?3,

0
¢y (W) [ 42 AWy Gi(Wo) | | | g [dWp E1(Wp)
aw, | aty o(Wo) | [ | W, dey €Wy
e w2 Mo G1(Wp)  £3(Wp) cewyl 2™ 1
07 a0g atg [5oWo toWg) || T 2 apg| aty (w2

Hence, in view of definitions (55) and (59) this shows that the jump condition of At is

dw —
9 0 1 - 1 + 2 for W0 € DC
990 | %o |[¢o(Wp |2 c2(W,)

- 1
A+(W0) - A (Wo) = 5 gO(WO)

The right side of this equation can be put into a more convenient form as follows: Notice

~~
that, for W, €DC,

Wol 1 1 _ 2 1 Wl 1 1

%0 | o |lg,Wp|? 2wy || %0 %Mo) o lr Wy oo

d

f

dw
YR 1 04, 1
2900 [Lo(Wg) dCy ~ Co(Wo)

Hence,

- 2| 1 W 1 —
A+(WO) - AT(Wy) = -i8,(W,) I ——|+2 for Wy EDC
8900 CO(WO) ch CO(WO)
(61)

and upon collecting equations (56) to (58) and equation (60) we have
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WOEEC

Im A*(W) =0  for< W, € KD (62)
—~
W0 € KE

ImA (Wy) =0  for W, GD (63)

Hence, in view of equations (61) to (63), we have transformed the boundary value prob-
lem in the Wo—plane for the holomorphic functions ¢ 1* (or Wli) into a boundary value
problem for the holomorphic functions AL, Clearly, once the functions A% are known,
the original functions ¢ lt can be obtained by simple quadrature from definitions (55) and
(59). However, it is necessary to transform the boundary value problem once more be-
fore a solution can be obtained,

Transformation of Boundary Value Problem for AT into

T-Plane and Solution of Problem

Under the change of variable W0 - T defined by equation (21), the boundary value
problem for A¥ inthe Wo-plane posed by equations (61) to (63) is transformed into the
following boundary value problem for the holomorphic functions A% in the T-plane

(shown in fig. 5).

~

)J+2 TE.S/’O

dw,
A(T) - A™(T) = -i8y(T) a[ 0_1 4,1

29| Ay LoD~ EolT

64
ij+(£+iO)=O £2-1 ? ( )

Im A" (£ +i0) = 0 £=-1

-/

Clearly, the domains of definition of AY and A” are 96 and 96, respectively,
It is more convenient to work with the sectionally analytic function £ defined on
the upper half T-plane in terms of A% as follows
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~

daw,
oM =—2A"T) Teat
dT 0

T) =1 (65)

) dW, )
2 (T) =—2 A7 (T) Te 9
aT

-

Since it is clear from equation (19) that dWO/dT is real when T is real, it follows
from the conditions (64) that © must satisfy the following conditions:

QT - Q(T)=I(T) for TES

0
(66)
Im QE +i0) = 0 for -o < f < 4
where we have put
daw dw
N(T) = - —2 i8(T) |2 O I —L |- 2 for T € ¥, (67)
daT a(PO Co(T) dCO tO(T)

Now suppose © is a sectionally analytic function which satisfies the conditions (66).
Then, if w is any function which is holomorphic in the interior of the upper half-plane
and which is real on the real axis, the function © + w also satisfied the boundary condi-
tions (66). First, suppose that w has no singularities on the real axis. Then, the
Schwartz reflection principle shows that w has an analytic continuation to the entire
T-plane and therefore has a Taylor series expansion about the origin which has real co-
efficients, Thus, w can be represented in the form

If m=4+o, w has an essential singularity at T = +; if m is finite, w has a pole of
order m at T = +e, It will be shown subsequently that the behavior of £ at T = «
dictates that m be finite, ¥ w has singularities on the real axis, the requirement that
w be real there shows that they cannot be branch points. Hence, these singularities
must be poles or perhaps essential singularities. However, an investigation of the solu-
tion shows that, if ¢ is to be bounded, the only singularity which can be allowed is a

simple pole at the origin., In view of equation (19) the most general solution to the
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boundary value problem (66) with certain restrictions of boundedness imposed can be

written as

m dw
AT =0T + » ¢ T +a—2  ReT>0 (68)
n=0 dT

where c, and ¢ are real constants and © is a sectionally analytic function which
vanishes at infinity, is bounded on the real axis, and satisfies the boundary value prob-
lem (66),

The function © can be constructed as follows: An investigation of the behavior of
I'(T) at T= o and T =-1 shows that it vanishes at these points like some power of T,
Hence, the Plemelj formulas (ref, 8) show that the Cauchy integral

A/_T_(idT (69)
27i yOT—T

(where the integration is to be performed in a counterclockwise direction along .S”O) is a
sectionally analytic function which is bounded on the real axis, vanishes at infinity, and
which satisfies the jump condition (66), However, this function is not necessarily real
for real values of T. But this can be compensated (as shown in ref. 8) by adding the

function

1 f T(@madr

2ri T-T
“0

to equation (69). (Notice that, if f is holomorphic in the upper half-plane, the function
f defined by £f(T) = £f(T) is also holomorphic there, and f(¢) + £(£) = f(¢) + £(¢) is real),
Thus, the function © with the required properties is defined by

o) =-L I(ndr _ 1 L(n)dr ReT =0 (70)
2wi 7-T 27i T-T
20 20

In order to complete the solution it is necessary to determine the real constants
cn(n =0, 1,2, ,..)and «. Before this can be done, however, it is necessary to use
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the preceding results to find Cf as a function of T, In view of the mapping T - z de-
fined by equation (35), which transforms the T-plane into the physical plane, this will
complete the solution,

Apropos of these remarks notice that definitions (55) and (65) combined with equa-
tion (68) show that for T €2

0
dw, aw, /et(T m dwW

£o(T) —2 4 0(f1M 1})|_ oT) + » ¢ T+ a—2 (11)
dT dW,|dey \go(D 2 e’ dT

Since equations (19) and (20) show that dWO/dCO =0 at T = -1, integrating both sides
of this equation yields

dW, [€3(T)
_0 — =~ _ ©(T)dT
¢ [£o(T) 2 CO(T)

T T
aw
+ c, _1 1y g 1 Z 047 (1)
%D NI

n=0

Substituting in equations (19) and (20) and rearranging yield

+ T

); (0 = + 117\/— CO(T) _ 1 o(T)dT
So(T) 2 (T+)VT-aJ,; oD

= T

T
v Va0 ¢y 1 phgr
(T +1)VT - A /, D
n=0

T
v 1Va o 00 / L _Trlgr (19
TryVr-aJ, %™ T
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Since T(T) = O(Tﬁ) with some B <0 for T — «, it follows from
Cauchy-type integral (ref. 8) that

OT)=0(1) {for T -

the properties of the

It is easy to see from equation (22) that CO(T) -1 as T - «. Hence, as T — «,

T
_1 emdr = of1)
5D
T
; T dT ~ Tn+1
£o(T)
and
T

LT+1dT~T
M T

Using these results in equation (73) shows that

T
Cl()~l+17r‘/zo——+m‘/— c_+1 Aa_l—
go(T) 2 YT

for T - o

Thus, in order that C41' be bounded for T - o, it is necessary to set

cn=0 for n>0

Equation (73) can now be written as

A A
x L emar+c, _1 grs2
1 Co(T) 1 Co(T) n

34
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T T T . -
AR VRN ™ 1 @(T) dT+cO/ 1 dT+9f 1 T+l +____‘/Z§°(l
gy(T) 2 (T+ YT -4 . S m)y %™ T (T+)YT -2

A
1 T+1gp (75)
. @™ T



Since CO(A) = -1 and since ©(A) is bounded, it follows from equation (75) that

+T - . A
1D ~14 O(YT - 4) - irya 1 1 e(r)dr
£o(T) 2 26+0 yroa|), %@
A A
+ ¢ _l._dT+g ——1—-T+1dT for T ~—~A
Co(T) T 1 §0(T) T

Hence, in order that C*l' be bounded at T = A, it is necessary that Cq and « satisfy
the two real equations

A A
———Q(T)dT+c0 1 ar+? 1 Trlgrog (76)
/| PG R RO

Using equation (27) and the fact that the origin of the coordinate system in the physical
plane is at D (fig. 2), it follows that

T

z(T) = 1 1 T+l 717)
i ) CO(T) T

Hence, it follows from this and definition (29) that equation (76) can be written as

/ —_— @(T) dT + cOIl(A) + az(A) = (78)

The constant « appearing in this equation is directly related to a geometric parameter
of the flow. In order to see this, notice first that the flow in the jet far downstream be-
comes uniform. Hence, in view of equation (5) (see fig. 2),

m () = [¢tET) | = Y1+ e

Zz—+C
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Therefore, continuity requirements dictate that the dimensionless net volume flow
through the jet Q be equal to

h\'1+<-:

But Q must also be equal to the change in the stream function across the jet. Hence,
the boundary conditions (11) show that

O-WF=Q=h 1+¢

Expanding both sides of this expression in powers of ¢ by using the expansion (15), the
last expansion (12), and equation (18) shows that

1 ‘€W¥+ e =(1+ehy+ .. .)(1+%e+ ce )
Upon equating like powers of €, we find that

Vi = ‘<h1 + %) (79)

Another expression for d/f can be obtained by first obtaining an expression for the
first-order complex potential within the jet W*lr from equation (71). To this end, notice

it follows from equations (13) that

+ + +
G g Wy _dwy

4
_dWy g W, _dwy
g 8o d& AW &, dz AW,

Hence,
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Substituting this result together with equation (74) into equation (71) yields

a4 ) W |4Gm
dT |d In & | £4(T)

. aw
L owim) + Lwym = @) 4 e+ @ 2
2 2 dT

Integrating this expression between -1 and T and recalling that dWO/d In §0 =0 at
T = -1 and that the normalization condition (7) implies W"I'(T) = WO(T) =0 at T=-1,
we find

dw T T
o [5(D _1g. wwi(T) + lwo(T) = O(T) dT + co(T + 1) + aW(T)  (80)
din gy | Eo(T) 2 2 .

Using equation (72) together with equation (74) to eliminate C'i(T)/ CO(T) from this
equation yields

T T
1 + 1 1 1
—=— |WI(T) - =W,L(T) | = —— (T dt - —— O(T) dT
§0(T)[ e 70 ] . S D@ /1

T
+ ¢ gt 1l i |+a l:z(T) -1 WO(T):| (81)
I LoD ¢(T)

It follows from this equation, after using equations (76) and (77), that

A
Wi(a) =<% B} a)WO(A) - O(T) dT - cy(A + 1) (82)

-1

Since O(T) is real for real values of T (see fig. 5, p. 13) and since ﬂmWO(A) = -1,
equation (82) shows that

ImWi@) = -2
2

An examination of figures 2, 5, and 6 (pp. 5, 13, and 17) together with equation (47)
easily shows that

ImWi(a) = wf
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Hence,

Finally, combining this with equation (79) shows that

a = -hl (83)

We now return to the problem of solving equation (78) for a and Cys Or, in view of
equation (83), for hy and cg. Substituting equations (23), (33), (34), (36), and (83)
into equation (78) shows that

A ) 2
'I"zA’LZI’I"/Z.T’AG(T)dT+c0 A+1+2AIn Vi+A- VZ +4\’ZV1+A

/1 A |

h 2
1l sa+ D+ @A - DIn ___M +6Ya Y1+
Ya

m

+ dinhcy - 2ihy 24 - 1) =0 (84)

Now

A

A A
T-2A+21\’Z_VT-A®(T) dT = a(z) dg_z‘/; (Ya - iyT - 4) O(T) dT
- T

-1 -1 -1
In view of the singularity in the denominator, the second integral must first be carried

out over the path shown in figure 7, and then the limit § -~ 0 can be taken. After per-
forming these operations, we find that

A A ——

-1 -1
where the notation P.V. indicates that the Cauchy principal value of the singular integral
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-1 0 A
A .
Figure 7. - Path of integration for / ‘ﬁ%_ VT - A gt
L1
in T-plane.

is to be taken. Substituting these relations into equation (84), recalling that O(T) is
real for real values of T, and taking the real and imaginary parts of the resulting ex-
pression yield

A A(
o) dt - 2 YA P.V. VZ+VA+£)®(£)d£+cO<A+1+4Vz—A V1+A>
-1 -1 :
2
h
-ih_l(mu 1+2Ya \/1+A>+ [cozA-i(ZA-n]ln(Ji’fA_-ﬂ) =0
i T ‘/A_
and

2mAcy - h1(2A - 1)+ 27A0(0) = 0

Upon eliminating o between these two equations, we find

A
hy = s2ma_ Jayap.v. (¥a+ 'A'g)G(E) dé
(a+D(2a+1+4yayar1) 4 .

A 2
- o) dt + A+1+2A1n<l1+$_—"/—é +4Ya Y1+ 2|00 (85)
1 A
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and

¢ = %11 h, - ©(0) (86)

Since equation (35) sets up a one-to-one correspondence between points of the physical
plane and points of the T-plane, it is clear that equations (71) and (81) (with the use of
definitions (67) and ('70)) allow us to compute the first-order perturbation to the velocity
and stream function at each point of the physical plane within the jet. Similar resulis
are obtained by exactly the same procedure for the flow quantities in the main stream,
but we shall not list the equations here. However, an inspection of these equations does
show that the choice of the constants Ch and & made above is sufficient to guarantee
that &~ is bounded.

In view of the fact that once the shape of the jet is known it is quite easy to sketch
in the streamline patterns, the most important quantities to be obtained from the analysis
are the shapes of the curves S and F in the physical plane (see fig. 2, p. 5). How-
ever, since the viscous spreading of the jet is controlled by the pressure (or equivalently
the velocity) distribution along the slip line S, that quantity is also of some importance.
Hence, explicit formulas will now be obtained for these quantities by using the formulas

derived above.

Derivation of Boundary Values

In view of the one-to-one nature of the mapping involved, it is clear that, if
ymW"'(z) = zpF , z must be a point on the stream line which passes through the point E
in figure 2. In addition, since the velocity potential is increasing in the direction E- C
along F, it is clear that, if Rewt(z) > R eW+(a + ib) (where a + ib are of course the
coordinates of the point E), z must be a point of the free-stream line F. Hence, to
within an error of order ez, the point z will be on the free-stream line F (i.e., it
will be on the first-order position of F) if

Imwt(z) = ‘P(I; + ez,bf‘ = -1+ egl/f‘
and if
ReW'(z) > ReWy(a + ib) + eReW](a + ib)

where equation (18) has been used. It is also clear that ﬁewo(zg ) > ReWo(a + ib) for
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any point z(l; S FO' In view of these considerations, it follows from equations (79), (82),
and (83) and the fact that Do Wo(z(1;> = -1 that the point zF = zg‘ + ezf will be on the

first-order position of F if zF gatisfies the equation

A
w*@F) = Wo<z(};>(1 -yl - e O(T) dT - ecy(a + 1) (87)

-1

It is clear from this equation that, when zg = a + ib, W"'(zF) = Wt(a + ib) and that

ﬁeW"'(zF) —+ % as z(l; - . Hence, the point z¥ traverses the stream line F (to

within terms of order 62) as zg traverses the Zeroth-order free-stream line FO'

Analogous considerations show that the point zS = z(S) + ez?, which is determined by

the equation

W) = Wo(zg)(1 - eyy) (89)

traverses the first-order slip line S as the point zg traverses the zeroth-order slip
line SO‘

By substituting equations (87) and (88) into the expansions (40) and (38), respectively,
the first-order distances zF1 and z‘? from the zeroth-order free-stream line to the
free-stream line and from the zeroth-order slip line to the slip line, respectively, are
found to be

A
at = -t_l(T.) WHT) + Wi W (T) + O(T) dT + co(A + 1) TeRC (89)
0 -1
and
25 = _t_l(_'r—) [w‘i('r) N ybfWO(Tﬂ T e %, (90)
0

where the fact has been used that the curves S0 and F0 in the physical plane are the
conformal images under the mapping T -z defined by equation (35) of the curve .9(’)
and the line EC, respectively, in the T-plane. The expansions (12) show that

2F - z(T) + ezf‘ T € EC (91)
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z5 = z(T) + ezf T € ¥, (92)

In addition, equation (41) shows that the magnitude of the velocity at each point 25

of the slip line is given to within terms of order 62 by

QM 3 g
e + Zl
£)(T)  £(T) dz

164 @5) |2 = [to(m) |2+ 2€]ty(T) |2 R Tey, (99

Upon substituting equations (89) and (90) into equations (91) and (92), respectively, and
substituting equation (81) into the resulting expressions, we find, after using equa-
tion (79), that

25=2(T)(1 + eh)) - € ITEEI(—'E) [®+(T) +co dT —_(:r_) / [@ (T) + co]dT T €,
_ (94)
zF = z2(a) + [z(T) - 2(&)] (1 + eny)
T 1
- e | o [@(T) + co dT - E_(i_") / [@(T) + cO]dT T € EC (95)

where equation (77) was also used in obtaining equation (95), ©"(T) denotes the limiting
value of ©&(T) as T approaches o from within 90, and the line integrals in equa-

tion (94) are to be taken along %o
It follows from the first equation (13) and equation (90) that

@{(T)+ 1 %o s _ clm gy

+ — 2
6T G dz L g m) aw, !

E
T g™ Eo(T) aw,

[w;('r) + z,z/fwo(T)]

dIn aw T d In
_dm % o (1D 1 ) whm)+ WO(T) W1og 2% Wo(T)
aW, |dlng,\Ey(T) 2 2 aw,
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Upon substituting equation (80) into this expression, we find that
T

O(T) dT + cy(T + 1) | + 1

2

QI g % g ding
Eo(T) oM dz 1 aw, | J,

Substituting this into equation (93) shows that

dln 3;’0 T

165@5) |2 = [£4(T)|2{1 + € + 2eRe

0 J,

where the line integral is along S0-
The distance S measured along the curve S is given by

T
sz

0 dT

-1

[®+(T) + cO]dT Tesy  (96)

laT| T e %, 97

where the integral is taken along the curve 9’0. Now, upon differentiating equation (94),

we find after using the first equation (13) that

T
S aw dint
dz_ .~ 0 1 Ji+eh - 0 [®+(T) N CO]dT T e,
dT 4T ¢.(T) aw
0 o J,
Hence,
azS 1 |y dmgy [T, te
- 1+2¢h - 2Re [@ (T) + co]dT T e,
dT |z;’0(T)[ dT aw,,

Substituting equation (96) into equation (79) gives, to within terms of order 62,

Substituting this into equation (97) shows that
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0

All the necessary results have now been obtained. However, it is convenient to
rewrite some of these in more explicit form. This is done in appendix B. For con-

So@eaf) [ 2

T

1 erED)

TE.S’O

venience, the most important equations of this section are now summarized.

Summary of Equations

Coordinates of downstream edge of nozzle:

a-=

Sl

Zeroth-order velocity:

1

2
A+ 1)+ (24 -1)TIn _.M + 6Yayi+a
A

b=22A-1)

£o(T)

:T—2A+21’/ZVTV—A IuT 20
T

Transformation from T-plane to physical plane:

2(T) +a+ib+ 1 (T-A)<1_g>+21‘/z<2_1> T-A-bm(iVT'A"“/Z
s T T

Change in stream function across jet:

Asymptotic jet width:

44

th=-1—e<h1+l>=1-+e¢/f
2

h=14+¢€ehy

Va

0<A

)

(98)

(34)

(23)

(35)

(79)

(15)



where

A —
hy = t2r A 2\/ZP.V./ (Va A"E)G(&)di
(a+Dft ar1+ayayast) /, g

- /-1‘A O(E)dE + [A+ 1+2 Aln(m \/—> \/Z\/H:IG(O)}

Va

Intermediate variables:

co -@_A_‘_l)_h - ©(0)
21 A

My =~ LT+1( 1 T\/T—A<1+_1_T+1>ﬂm 1 99, 1
T T No(D |Va(T+1) 2T-A £o(T) €o(T)

- (T+ VT - Aﬂe—l— 1 ] -2 T=__.7L_e-in
8o (T + VT - a sin 7

m
o*@m) = 1 ) + 2V - To)Mb)dy
2 27i A y coty - peotn - ily - n)

T
27i y coty -necotn+ily +1)
0

where

M(n) = (n - cos psinm) +1i

sin“n

(85)

(86)

(99)

(B4)

(100)
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T
o) =1 Im / COME) gy o< <uw (B5)
m yeoty + & -y
‘ 0
zg(n) =z (- - e'i77>
sin 7
(B6)
S\ = .1 -in
o) C0< sin g e >
Vi = [¢ eS|V, (B8)
1/2 1/2
2 _a\/4 2 2
J(n) = (1 - 5 cot n + in) (IJ +77> u+i <N +77> il (B9)
2 2
p=ncotn+ A (26)

Position of slip line:

n
S S 1 1 [t
z¥ =z + ehy) - € — - —— 1O (y) + cy | M{y)dy
0 ! j‘ [Co(')’) 60(77)]1_ Y 0] Y

Velocity along slip line:

+, 2
Ds_(g);lmz Cps = ltg(n)"?(l + €

\

o]

+2erVa Re {;(1—) VRCOr COJM@)dy})
n
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Distance along slip line:

F n
1- 2 2

i _Vi(l—vcowidy 0<n<m (B13)
0 T 0 V;(')’) L4

Position of free-stream line;
ZF

=a+ ib+ [z(‘g’) - (a+ ib)] 1+ ehl)

1 -—1_.[9(51)+c0]dg1 A<E<w  (Bl4)

Colep)  Lol®)

Equations (19) and (20) have been combined with equation (B1) to obtain equation (99).

RESULTS AND DISCUSSION

The numerical calculations were performed by using complex arithmetic. Hence,
there is no need to separate the real and imaginary parts of the various formulas given
in the preceding section, Equations (34) are used to calculate the orifice offset ratio
B/A = b/a for various values of the parameter A. However, there is not a one-to-one
correspondence between the values of B/A and the values of A. In view of this fact, it
is more convenient to present the results in terms of the orifice orientation angle de-
fined as i:an_1 B/A since there is a one-to-one correspondence between this latter
guantity and the parameter A. A plot of the orifice angle against the parameter A is
presented in figure 8, The orifice angle completely fixes the geometry of the problem.,
Hence, once the geometry of the orifice is set, the parameter A can be determined
from figure 8, This parameter is the one which appears naturally in the formulas which
are used to calculate the various physical quantities of interest. The only other param-
eter appearing in the problem is ¢, which gives a measure of the difference between the
total pressure in the jet and the total pressure in the main stream, This parameter is
defined by eguation (1) as
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Equations (23) and (113) are used to calculate I'(n) for various values of A, and
these values of I'(n) are used together with equation (114) to calculate ©'(n) and ©(¢)
for various values of A from equations (102) and (103), respectively, All the physical
quantities presented in the plots are determined by these functions. Substituting the
values of O(¢) into equation (85) allows the quantity h, to be found as a function of the
parameter A. Combining this with equation (15) gives h=H /HO as a function of A
and e, Now for two-dimensional jets, the jet contraction ratio is defined as the asymp-
totic jet thickness divided by the length of the orifice. Hence, the jet contraction ratio

is

H h

'A2+B2 a2+b2

Substituting equations (15) and (34) into this formula gives the jet contraction ratio as a
function of A and e or, in view of figure 8, as a function of tan'1 B/A and e. These
results are presented in figure 9. It can be seen from figure 9 that, for positive values
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Figure 9. - Jet contraction ratio,

of the orifice angle, small changes in ¢ result in large changes in the contraction ratio,
the effect becoming more marked as the orifice angle is increased. The opposite con-
clusion holds for negative values of the orifice angle. Figure 9 also shows that, for a
given orifice angle, increasing ¢ always results in an increase in the jet contraction
ratio. This increase is negligible, however, for orifice angles less than -100°, Fig-
ure 9 shows that the jet contraction ratio is a maximum for an orifice angle of approxi-
mately -80° and falls off markedly when the orifice angle is changed.

The parametric equations (with parameter 7) for the slip line are obtained by sub-
stituting equations (86), (35), (114), and (23) into equation (105) and using definitions
(104) and the expression for ®+(n) discussed above., The parametric equations (with
parameter £) of the free-stream line are obtained by substituting equations (23), (35),
and (86) together with the values of ©(f) discussed above into equation (112). The re-
sulting expressions (for the slip line and for the free-stream line) determine the bound-
ary of the jet. The shapes of the jet boundaries for various values of the parameters ¢
and B/A are shown in figures 10 to 19, A number of these figures consist of two parts.
When this occurs, part (a) of the figure is for the case when the total pressure in the jet
exceeds that in the main stream (¢ = 0) and part (b) is for the case when the total pres-
sure in the main stream exceeds that in the jet (¢ = 0). Figure 10 corresponds to a jet
injected normal to the main stream (B = 0). Figures 11 to 15 are for negative orifice
angles (i.e., jet injected downstream), and figures 16 to 19 are for positive orifice
angles (i.e., jet injected upstream), Figures 10 and 16 show that, when the orifice
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(b} Total pressure in main stream exceeds that in jet, e <0,

Figure 10, - Jet contour for orifice offset ratio, B/A =0. Jet injected normal to main stream.
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Figure 13. - Jet contour for orifice offset ratio, B/A = -2. Jet injected downstream.
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Figure 17. - Jet contour for orifice offset ratio, B/A =1, Jet injected upstream. Total pressure change within
jet, €=0.
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angle is greater than or equal to zero, a small change in the total pressure within the
jet results in a large change in both the jet venetration and jet thickness, This effect
becomes more pronounced as the orifice angle is increased. In fact, it becomes so pro-
nounced that it is felt that the analysis may be invalid for orifice angles larger than 45°,
For this reason, only the curves for ¢ = 0 are given for these orifice angles., On the
other hand, figures 11 to 15 show that, for sufficiently large negative values of the ori-
fice angle, changes of the total pressure within the jet have almost no effect on the jet
penetration or on the jet thickness, Although the scale of the figures is too small to
show this, the numerical results do show that the jet always leaves the wall in a tan-
gential direction. Figure 9 shows that turning the jet into the main stream tends to
markedly decrease the contraction ratio, which is indicative of a decrease in the flow in
the jet, The indications are, however, that a slight increase in the total pressure in the
jet can easily compensate for this decreased flow, The jet penetration increases with
increasing orifice angle,

The pressure coefficient on the slip line is obtained as a function of the distance
along the slip line in parametric form from equations (108) and (111) after using defini-
tions (104), (106), and (107) and substituting in equations (114), (23), (79), and (86).

The results of these calculations are shown in figures 20 to 27. Each figure is drawn
for a different orifice angle, These curves contain all the information necessary for
calculating the viscous boundary layer along the slip line, The figures show that the ve-
locity within the jet at the upstream edge of the orifice decreases with both increasing
orifice angle and decreasing ¢, It can also be seen from these curves that the pressure
coefficient nearly reaches its asymptotic value in a distance of 10 jet diameters,

0 2 4 6 8 10 12 14 16
Distance along slip line, S/Hy

Figure 20, - Pressure coefficient on slip tine of jet for orifice offset ratio, B/A = 0.
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Figure 21. - Pressure coefficient on slip line of jet for orifice offset ratio of
- B/A = 2 (third quadrant).
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Figure 22. - Pressure coefficient on slip line of jet for orifice offset ratio,
B/A = -6 (fourth quadrant).

I I I I | I I
0 2 4 6 g8 _ 10 12 14
Distance along slip line, S/H

Figure 23, - Pressure coefficient on slip line of jet for orifice offset ratio,
BI/A = -2 (fourth quadrant).
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Figure 25, - Pressure coefficient on slip line of jet for orifice offset ratio,
B/A = -0, 1862 {fourth quadrant).
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Figure 26. - Pressure coefficient on slip line of jet for orifice offset ratio, B/A = 0.5 (first
quadrant).
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quadrant). Total pressure change within jet, € = 0.

CONCLUDING REMARKS

A procedure has been developed to obtain a solution to the problem of a two-
dimensional jet injected from an orifice at an oblique angle to a moving stream for the
case where the total pressure in the jet does not differ too much from the total pressure
in the main stream, The analysis shows that, for orifices tilted into the main stream,
small increases in the total pressure in the jet result in large increases in the jet pene-

tration and in the jet thickness,

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, June 24, 1969,
129-01-07-07-22.
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APPENDIX A

FLUIDS OF UNEQUAL DENSITY

A situation often encountered is the flow of a jet of high-density fluid into a low-
density stream. When the jet and main stream are not composed of the same fluid, the
foregoing analysis may be applied after a simple rescaling, This fact will now be proved.

Previously, the problem was formulated in terms of the dimensionless velocity

£=u-iv= U -iv
VOO
and its complex potential
W=g+iy=2+1¥
V.Hy

In order to consider fluids of unequal density let £ be redefined as

¢(z) = ﬁ (A1)

¢ (z) = 222 "
v

\

o]

where p. is the density of the fluid in the jet and p_, is the density in the stream. To
preserve the relation

it is also necessary to redefine the potential W as
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[ o
WHz) =4 /L £+, o pF
P VooHO
W= J (A2)
W-(z)=<i>+i\lf z D
VOOH0
-
The dimensionless coordinates are, as before,
X = _)(_
Hy
Y
Y R,
0
a= A
Ho
b=_B
Ho
h-H
Ho
The perturbation parameter ¢ is defined more generally as
N 2 \2
P.-P p.(V)—p(V) 2 - 8,2
e=—t —*- i/ =08l et@d)| - @) @

1 o2

9 poovoo poovoo

which shows that the jump condition on the slip line has the same form as for fluids of

equal density,

Likewise, the value of the dimensionless velocity on the free-stream line is given

again by
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2 p.(V+)2 P.-p P.-P
R e e L=

2 1 2

=1+¢€ (5)
PeoV oo —2_ PV oo E PeoV oo '

Very far from the orifice, the dimensionless velocity takes the same limits as in
the equal density case, namely,

¢ z) -0 z-K (9)
£ (z) -1 z -G (10)

Similarly, the homogeneous conditions on the velocity components at the solid boundaries
remain unaltered:

Im etz =0 z KD
Im §+(z) =0 zZ € EK
Im e (z)=0 z<GD
Lastly, the boundary values of the stream function are again given by

ImWH@) = ImW (z)=0 zE8

ImW(z) = yF Zz EF

The value of ng is to be determined in the course of the analysis exactly as before.

Thus, it is seen that the boundary conditions on the velocities and the stream func-
tion are identical to those obtained when the densities are equal (eq. (11)). Since the
differential equation for the flow (Laplace's equation) remains unaltered as well, the
analysis proceeds exactly as before, with the same solutions for the zeroth- and first-
order problems,.

The interpretation of the results must be modified in one instance through inclusion
of the density ratio. The pressure ratio (eq. (10)) is now

2
+
_Po = P(g ¥y ) pj[VS(n)]
ps 1

2
= ¢t D) (A3)
N poovgo pooveo
2

C
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Equation (A3) shows that the pressure coefficient given in figures 20 to 27 must be re-
interpreted as the ratio of the dynamic pressures when the fluid densities are unequal,
Another quantity of interest is the mass flow in the jet

M, =p V_H —p—j—lzpFl— V H |t +e(hy +1 =‘/ (A2+B2)(1+€)CR
i FooV oty p = Pjpoo w010 1 9 Pjpoo A

o0

where C,R. is the contraction ratio computed to first order (fig. 9).
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APPENDIX B

EXPLICIT FORMULAS FOR CALCULATING BOUNDARY VALUES

Carrying out the differentiation by parts in equation (67) yields

daw aw dw -
ey - - 0 fie [0 (1 Moy g, 1 1 Moy (6 1)),
dT 294 \Ly At

S0 fo %o 200 L

I follows from the definition of a derivative of a holomorphic function that this can
be written as

N
dw dw aw,
rmy - - 0y | a (1 Moy, 1 1 'Oy,,t(d 1\, ey,
atr dWo\Sg g/ o So 9 W, ¢o)
(B1)
Applying the Plemelj formulas (ref, 8) to equation (70), we see that
o(T) - o+(T) = L r(T) + 2=V I(ndr _ 1 P(r)dr Teg,
2 2ri 7-T 27ni 7-T
“0 0

where the integration is to be performed in a counterclockwise direction along .9’0. In
view of equation (24), however, this can be written as

0
o*(n) = 1 ) + -V 2 . d( Y e—iy>
2 27i Y v _ M g-in \siny
A sin y sin 7
0
L Lly) a2 ¥ 0<n<w (B2
271 04 ei'y _.m _e-in sin vy
A siny sin 7
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where, for brevity, we have written ®+(17) in place of ©" [(—n/sin ) e_in], I'(n) in

place of I‘[—(n/sin 1) e"in], etc, Since

d(#e—h/):— 'y_cos'ysm'y_l_idy
smy Sinz'y

equation (B2) can be written as

T
T(y)[ 12 (v - cosy Sin7)+{ldy

1 PV, i
o () =L ray) + B sin'y |
2 27i yeoty -ncecotn-ily ~-7n)
0
T
= 1 5 .
1“(7/)[ 5 (v - cosy siny) - l]dy
1 $in’y 0<n<n
27i vy coty ~npcotn +ily +1m)
0
For T =£ + 10, equation (70) becomes
0 r Y oY 0 TG Y el
)d(——e () d{—*—e
o) = _1__ sm?/ ; _1 SlI.l'y
2mi Y el £ 27i Y oW, £
/ sin y / sin y
0
-1 9, ') al e-iy)
T v e-iy y sin y
siny

and in view of equation (B3) this can be written as
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T
r(y)l:’y - COS vy Sin')/ + _‘de
2
o) =L Im L siny —eo < £ < oo (B5)

T veoty +§& - iy

0

Upon defining zg(n) and £5(n) by

s o
zg() = Z(—-_ 1. e 177)
sin g

> 0<n < (B6)

o = o =)

sin 7

J

and using equation (B3), equation (94) becomes

zS = zg(n)(l + ehl)

n .
¢ __1___1_[@+(y)+00:|(v—cw+i>dy 0<n<r (B

Upon defining V(n) by
Vim =V, et EY]  o<a<n (B8)

and J(n) by

(2P G2 >/ ) -

Jn) = (1 - n cot n + in)

where pu is defined by equation (26), it follows from equations (19), (20), (24), (25),
and (B6) that equation (96) can be written as

65



2
_——Bfg(z)] - [ [1+
\'

e}

S .
+2enVa Re ;/ [0%6) + eq}(1—eos L SY 1 i)ay 0<n<m  (B1O)
0

Let Py be the pressure far inside the orifice (the point K in fig. 2). Since the velocity
is zero there, it is clear that P, = P.. Hence, it follows from equation (2) that the
pressure at the point X, Vg OR the slip line p(xs, ys) is given by

2
- , vt
po‘pmsyg::m+@§|2=[SMH (B11)
EpVi v2

Hence, let the pressure coefficient on the slip line C ps be defined by

by - p(xg, V)

= Bl
ps . (B12)
3P
I is clear from equation (19) that
Wo| _1jma1) 1 (|T| +2Re T4 1)1/
dr | «| T m |T|
Hence, it follows from equation (24) that
dWO sin 2 1/2
= 0y 1 - 2pcotn+1 for Te¥
dT ™ 2 0
sin“n

Equations (24) and (101) show that for T & .9’0
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1/2

2

laT| = |cot - —T— - i dn=—.1—<1- 2n cotn+_’7_—> &
sin 7

sin“n sinzn

Hence, for T € 5’0

dW
dT

ldTl == —77— 2ncotn + 1 dn=—|:(n cot n - 1) +772]d77
m smzn

Using this result in equation (98) together with definition (B8),

Hiz(l—ﬂpf)voo 1 [(1-')/ cot'y)2+'y2:|dy

T + Y
0 Vi)

Finally, it follows from equations (95) and (33) and figure 5 that

2 -atib+ [z(g) - (a+ ib)] (1 + ehl)

:
1
- € O(t,) + ¢, [dE A<E <o
[[@0(51) co(»;)}[ D+ coléty

(B13)

(B14)
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APPENDIX C

SYMBOLS

horizontal distance between edges
of orifice

A/l

vertical distance between edges
of orifice

B/l

pressure coefficient along slip line
n=0, 1, 2, , . . constants

flow regions in physical plane
regions in T-plane

free streamline in physical plane
asymptotic jet width

H/1

function defined by eq. (29)
function defined by eq. (107)

characteristic length (set equal
to HO)

" function defined by eq, (114)

order symbol

order symbol

total pressure in jet

total pressure in main stream
Cauchy principal value

static pressure

static pressure at jet source

static pressure far upstream
from jet

Q

o
<1m<1+<2 a A w> 0

8

<

g

< ] >

N

dimensionless volume flow through
jet

slip line in physical plane

distance along slip line

slip line in T-plane

intermediate variable, & + in

X~component of velocity

U/,

Y-component of velocity

velocity along slip line inside of jet

free-stream velocity

V/vV,,

dimensionless complex potential,
@+ iy

coordinate in physical plane

X/l

coordinate in physical plane

Y/l

dimensionless complex physical
coordinate, x + iy

dimensionless coordinate of points
on slip line

dimensionless coordinate of points
on free-stream line

constant
function defined by eq. (67)

dummy variable to replace 7



location of edge of orifice in
T-plane

(®; - P /5 oV

dimensionless complex conjugate
velocity, u - iv

coordinate in T-plane

function defined by eq, (70)

arg, ¢ 0

defined by eqs. (55) and (59)

function defined by eq. (26)

coordinate in T-plane

density

dummy variable in T-plane

velocity potential

®/1V,,

v stream function

Y LA

zl/F value of dimensionless stream
function on free-stream line

Q function defined by eq. (65)

Subscripts:

0 zeroth-order quantity

1 first-order quantity

Superscripts:

F value of quantity on free-stream
line

S value of quantity on slip line

+ value of quantity inside jet and

orifice
value of quantity in main stream

complex conjugate (over bar)
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